
AD-fi33 447 PROUST- KNOWLEDGE-BASED PROGRAM UNDERSTANDING(U) YALE i/1i "7
UNIV NEW HAVEN CT DEPT OF COMPUTER SCIENCE
W L JOHNSON ET AL. AUG 83 YALEU/DCS/RR-285

UNCLASSIFIED N88814-82-K-0714 F/G 9/'2

mohhEEEEmhoiE

& .,.i

11111 1.0
IIII W EM 13

I36L

MICOOY RESOLUTOt TEST CHART
NATIONAL BUREAU Of STAN4OC6-k96-A

:I

rt.

PROUST: Knowledge-Based Proraxn Understanding

WV. Lewis Johnson and Elliot Soloway..

Yz'leV/ RR 42.5

August 1983

DTIC
E LECTEIP

4 ~ OCT 12 1983

YALE UNIVERSITY D

DEPARTMENT OF COMPUTER SCIENCE
.3

DIShI1N STATEMETA
Appoved for public r6l1002) % 83 10 12 149

Mstribution Unlimited I

*q

I

PROUST: Knowledge-Based Program Understanding

W. Lewis Johnson and Elliot Solowy

YaIeU/41,6 IRR #e s I
AI

*1

W.Lws.ono a .Uo So Ayj

SE~u~TV CASSFCATIM OPTNIS PA-0E Oft~en Data Entered)

REPORT DOCUMENTATION PAGE REA INTRCTON

4. TITLE (and Sablft and5 11.Tzz orR:::Tr PEIODCOVRE

9. PRFOMINGORGNIZTIONNAM AN ADDESS10.PROGRAM ELEMENT. PROJECT. TASK
ORANZTINARE A 6 WORK UNIT NUMBERS

Depatmen ofComputer Science

NwHvnCT06520 NR 154-492
11. CONTROL.LING OFFICE NAME AND ADDRESS 12. REPORT CATS
Personnel and Training Research Programs August 1983
Office of Naval Research (Code 458) 13. NUMSER or PAGES
Arlington, VA 22217 2

Td. MONITORING AGENCY NAME & ACORESS(tf diferent (Mm CmGaOfIM& Offigio) is. SECURITY CLASS. (of * at~o

unclassified
IS WdIILE 11ATIOft/ DUN. AD!

1S. DISTRIBUTION STATEMENT (of this Rhport)

Approved for public release; distribution unlimited

17. OISTRIOUTION STATEMENT (of the abstract enteedh toSock 20. IItoua iffren 4RaWM)

II. SUPPLEMENTARY NOTES

It. ICEY WORDS (Continue on reverse side It neesesse ad Iflhjwit by block mmbef)

NExpert Systems Programming PlansK Automatic Program Unde rstanding Tutoring Systems

)20. ARSTRACT (Cmntinuam revrs oae it If40M anc~e7md 11,11ottY bY block mow)
This paper describes a program called PROUST which does on-line analysis and
understanding of Pascal programs written by novice programers. PROUST takes as
input a program and a non-algorithmic description of the program requirements,
and finds the most likely mapping between the requirements and the code. This
mapping is in essence a reconstruction of the design and implementation steps
that the programmer went through in writing the program. A knowledge base of
programing plans and strategies, together with common bugs associated with the
lis used in constructing this mapping. Buas ar. discvrdi h IQce of

DO F0N? 1473 EDITION of I NOV 5 IS COSOLETE

S!N012. F.Old 601SECURITY CLASSIICATION, OF TV$$ PASS enon Dos aterew

ICUIII' CLMSI CATION OF T"r, PAGI fb Do& htme

)relating plans to the code; PROUST can therefore give deep explanations of
program bugs by relating the buggy code to its underlying intentions.

Aresston 1 _For

NTIS GRA&i
DTIC TIB
Unannonnced
Jusificatio, -

Ds . -iution/

AvailbilltY CiAeS

Dist Speciai

I I|

s,° 0102. IF- 014- 6601

WlluQIT CLAW MlI'ATI0O1 OFl T0416 VASe(B"m 04 i41

4 v. .. " '-'- '-': ". . .- ''; .:.: :.: :

- - -. . - - . - -. . -. .. - . - *. -. -.. . - - - ... - - - -. - - -. 7rr2ry:§'j~r~rj7j7J:: C 77'7 t7 7'

'4

4
P4

Lv

:1'

*4

.4

~4

-.4

a.;

I'.

'C
<I

2,

'p.

.9

9

I
4

4
.4

-4

C'

I'

C'
C'

.............. %...%..'.~%%.**.' - C' . . . '1

PROUST: Knowledge-Based Program Understanding

W. Lewis Johnson

Elliot Soloway

July 1983

Yale University

Computer Science Department

New Haven, Ct. 08520

203-438-0606

This work was co-sponsored by the Personnel and Training Research Groups. Psychological
Sciences Division, Office of Naval Research and the Army Research Institute for the lehavioral
and Social Sciences, under Contract No. N00014-82-K-0714, Contract Authority Identification
Number, Nr 154-492. Approved for public release; distribution unlimited. Reprodiction in whole
or part is permitted for any purpose of the United States Government.

-a' ' ,; , ' % ;% ." . ,• ,'.'-''',....- ..-.. '' . '". . .. ,.' - -. .'- . - i . . i?. .."."- . ' ' '. .

Abstract

This paper describes a program called PROUST which does on-line analysis and understanding of
Pascal programs written by novice programmers. PROUST takes as input a program and a non-
algorithmic description of the program requirements, and finds the the most likely mapping
between the requirements and the code. This mapping is in essence a reconstruction of the
design and implementation steps that the programmer went through in writing the program. A
knowledge base of programming plans and strategies, together with common bugs associated with
them, is used in constructing this mapping. Bugs are discovered in the process of relating plan.,
to the code; PROUST can therefore give deep explanations of program bugs by relating the httggy
code to its underlying intentions.

1. Introduction: Motivation and Goals

Our goal is to build a tutoring system which helps novice programmers to learn how to

program. This system will have two components: a programming expert which can analyze and

understand buggy programs, and a pedagogical expert that knows how to effectively internet with

and instruct students. We have focused our attention on the first component, with the objective

of building a system that can be said to truly understand (buggy) novice programs.' In this

paper, we will describe the theory and processing techniques by which our analysis system,

PROUST, understands buggy and correct programs.

Bugs in programs are sections of code whose behavior fails to agree with the program

specification. Although the presence of bugs may be indicated by various kinds of anomalous

program behavior, in general bugs are not properties of programs, but rather are properties of

the relationship between programs and intentions. [9, 101 For example, consider the program in

Figure 1-1. The programmer has written a program that reads in a number and then computes

the average of all the numbers between it and 99999, in integer increments. This is not what the

stated problem requires; presumably the programmer was trying to solve the problem, but a bng

has altered the program's behavior. How do we determine what this bug is? Note that the

programmer first does a Read into the variable New, and then increments it by 1. Based on our

* -: theory of programming knowledge, [17, 12, 18, 11 we would hypothesize that the student tho,,ght

that incrementing the variable New would return the next value of New; if incrementing Count gets

the next INTEGER value, then incrementing New should get the next input value! The student has

thus made an overgeneralization: adding one to a variable returns the next value of that

variable. The key element of the above analysis is the construction of a relationship from a piece

of code to a problem goal; the mechanism for that construction was knowledge about how
.?.

,Miller's SPADE.o [III is another example of a programming tutor; unlike PROUST, it constrains the program
construction process so that less machinery is required for understanding and more effort can be devoted to pedag.igy.

.............

2

programs are typically constructed, together with knowledge about novice misconceptions.

Problem: Read In numbers, taking their sum, until the number 99999 is seen. Report
the average. Do not include the final 99999 in the average.

1 PROGRAM Average(input, output);
2 VAR Sum, Count, New. Avg: REAL;
3 BEGIN
4 Sum := 0;
5 Count := 0;
6 Read(New);
7 WHILE New<>99999 DO
8 BEGIN
9 Sum := Sum+New;

10 Count := Count+1;
11 New := New+1
12 END;
13 Avg := Sum/Count;
14 Writeln('The average is ', avg);
15 END;

PROUST output:

It appears that you were trying to use line 11 to read the next input value. Incrementing NW.\
will not cause the next value to be read in. You need to use a READ statement here, such as you
use in line 6.

Figure 1-1: Example of analysis of a buggy program

While we have not built a pedagogical expert yet, it would certainly need the type of

information produced in the above analysis. That is, an intelligent tutoring system would need

to know:
e what the bugs in the student's program are, and where they occur;

* what the student was intending to do with the buggy code;

* what misconceptions the student might have which would explain the presence of the
bugs.

What is an appropriate method for deriving information such as this from a program? One

way might be to compare the input-output behavior of the program against the expected input-

output behavior. The information which this approach would provide is insufficient, particularly
with larger programs, because a number of bugs might result in the same input/output behavior.2

2BIP [21] makes use of input/output behavior in its program analysis; consequently it only deals with -mall

programming problems.

3

For example, many different bugs can cause a program to go into an infinite loop, so simply

knowing that a program goes into an infinite loop is insufficient for determining what the hug is.

Enhancing input-output analysis with dataflow analysis, or other compiler analysis techniques.

will not help in cases where the code does not have any obvious structural anomalies, 3 such as in

the preceding example.

What is missing in the above methods is a detailed understanding of the relationship btwern

the program text and the program's intentions. We suggest that a method for building such a

description involves (1) recreating the goals that the student was attempting to solve fi.e.. what

problem the student thought he was solving), (2) identifying the functional units iu the program

that were intended to realize those goals. In effect, the programming expert need., to annl.:e the

buggy program by reconstructing the manner in which it was generated. The claim is that the

trace generated by the programming expert does actually correspond to what the stuident was

thinking, although not necessarily to the utmost detail; the pedagogical expert would then use

that trace in subsequent tutoring activity. 4 In this paper, we briefly highlight. the theoretical

basis for reconstructive program analysis, and we detail how PROUST goes about building the

reconstruction.

2. The Role of Plans in Program Understanding

Knowledge about what implementation methods should be used in programming is codified in

PROUST in the form of programming plans. A programming plan is a procedure or strategy for

realizing intentions in code, where the key elements have been abstracted and represented

explicitly. It is our position that expert programmers make extensive use of programming plans.

rather than each time building programs out of the primitive constructs of a programmruing

language. This claim is based on a theory of what mental representations programmers have and

use in reading and writing programs. In [17, 6, 19, 201 we describe various empirical experiments

which support our theory. Thus, PROUST is directly based on a plausible, psychological theory of

the programming process. Note that codifying programming knowledge in term- of plan% i, not

- unique to PROUST: the Programmer's Apprentice, [121 for example, also makes extensive vise of

plans."'

Figure 2,1 is an illustration of how plans are realized in programs. The figure shows a correct

'One area in which many compilers do a reasonable job is analyzing syntactie errors. Although it wnulH b
worthwhile to construct a parser which produces error reports aimed at novices, this is outside of the scop, or i,,rcurrent work.

*4Most intelligent tutoring systems at least tacitly assume such a correspondence. [7, 8, 31

5Sniffer 1151 is a prototype of a debugging system which is based upon the Programmer's Apprentice.

9,

* 4

implementation of the problem shown in Figure 1-1, together with four plans that this program

uses. Two of them, the RUNNING TOTAL VARLABLE PLAN and the COUNTER VARIAIlE Pl,..\N. are

variable plans, i.e. they are plans which generate a result which is usually stored in a variable.

Such plans typically have an initialization section and an update section, and carry information

about what context they must appear in, e.g. whether or not they must be enclosed in a loop.

The other two plans, the RUNNING TOTAL LOOP PLAN and the VALID RESULT SKIP (GARD. are

control plans; their main role is not to generate results but to regulate the generation and tle of

data by other plans. The RUNNING TOTAL LOOP PLAN is a method for constructing a loop which

controls the computation of a running total; in this program it also controls the oper-a ion of Ihe

COUNTER VARIABLE PLAN. The VALID RESULT SKIP GUARD plan is an example of a skip guard.

i.e. a control plan which causes control flow to skip around other code when boundary conditions
occur. In this case it prevents the average from being computed or output when there is no

input.

Problem: Read in numbers, taking their sum, until the number 99999 is seen. Report"
the average. Do not include the final 99999 in the average.

PROGRAM Average(INPUT, OUTPUT);
VAR Sum, Count, New, Avg: REAL;

Counter Variable BEGIN
Plan ---------- > Count := 0;

--- > Sum := 0; Ruting Total Loop Plan
I Read(New); <-

Running Totall I WHILE New <> 99999 DO < .---- I
Variable Planl I BEGIN I

------- > Sum := Sum + New; < ------ I
S> Count := Count + 1; 1

Read(New); <
END; Valid Result Skip Guard

IF Count > 0 THEN < ------------------------
BEGIN <--------------------------------
Avg := Sum/Count; <------------------
Writeln(Avg); < ---------------------

END < ----------------------------
ELSE <----------------------------------I
Writeln('no legal inputs'); <---------

END.

Figure 2-1: Programming Plans

Recognition of plans in programs forms the basis of our approach to program understa:nding.

But plan recognition alone is insufficient. Novices often use plans that would never occur to an
% expert, because they do not have a good sense of what is a good plan and what is not. PPC0t "T's

knowledge base of plans has therefore been extended in order to include many st;ylfically

dubious plans.6 Unfortunately, the more alternative plans there are in the system. the h:,rdtr it

OThe process of collecting novice rograms and - alyzing them is described in 121, 191, and [10).

,.

4'

*. -.

,.%" . -.- . .

is to determine which plans the programmer was using. Furthe:: ore, program behavior depends

not only upon what plans are used, but how they are organized; it is thus possible for a program

to use correct plans yet still have bugs. In order to cope with these problems a met hod is needed

for relating plans to other plans, and to the programmer's underlying intentions. This proces.

and the way it is used to search for the right interpretation of the program, is described in

Section 4.

3. A Typical Problem in PROUST's Domain

PROUST's knowledge base is currently tailored to analyze the programming problem in F~igure

3-1. 7 This problem (hereafter referred to as the Rainfall Problem) is a more complex version of

the averaging problem shown in Figure 1-1. Among other computations, a program that olves

this problem must

1. count the number of valid inputs (i.e., days on which there was zero or greaiter
rainfall), and

2. count the number of positive inputs (i.e., days on which rain fell).

Novices attempt to realize these two goals in a variety of correct and buggy ways. Since coping

with variability is one of PROUST's main objectives, examining how PROUST handles this Specific

set of goals should be illustrative. Thus, in what follows, we will focus on PROUST'S te('hiii(iiies for

processing fragments of code that implement these goals.

Noah needs to keep track of rainfall in the New Haven area in order to determine when to launch
his ark. Write a program which he can use to do this. Your program should read the rainfall for
each day, stopping when Noah types "9999O", which is not a data value, but a sentinel indi'ating
the end of input. If the user types in a negative value the program should reject it, since negative
rainfall is not possible. Your program should print out the number of valid days typed in. the
number of rainy days, the average rainfall per day over the period, and the maximum amount of
rainfall that fell on any one day.

Figure 3-1: The Rainfall Problem

4. Relating Goals to Code via Plans
In order to relate the plans in a program to the program requirements. PROUST makes explicit

the goal decomposition underlying the program. A goal decomposition consists of

. a description of the hierarchical organization of the subtasks in a problem.

e indications of the relationships and interactions among subtasks, and
" a mapping from subtask requirements (goals) to the plans that are used to implement

them.

'We are currently extending PIROUST to handle a range of introductory programming problems.

.-.

6

The plans which a goal decomposition specifies are matched against the program; this results in a

mapping from program requirements to individual statements.

In attempting to understand all except the most trivial programming problems, two issues

must be squarely faced:

e the goal decomposition of a problem may not be unique, andI * one program may be associated with more than one goal decomposition.
We deal with each issue in turn in the next two sections.

4.1. The Space of Goal Decompositions and Programs

Figure 4-1 illustrates how alternative goal decompositions can lead to different program

implementations. A single problem description, at the top, can result in several different goal

decompositions., which in turn result in a number of different programs, depending upon which

plans are used. Some of these programs may be correct, others buggy. Buggy programs are

either derived from incorrect goal decompositions or from incorrect implementations of correct

goal decompositions. Each path from the problem description down to an individual program is

a program interpretation; we call this set of possible derivation paths the interpretation space

associated with a problem.

PRO LEN DESCRIPTION

GOAL DECOMPOSITION I GOAECOMPOSITION 2 GOAL DECOMPOITION 3

CORRECT CORRECT CORRECT CORRECT CORRECT
PROGRAM PROGRAM PROGAM PROGRAM PROGRAM

BUGY BUGGY BUGGY BUGGY BU GY BUGGY BUGGY BUGGY BUGGY BUGGY

PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM

Figure 4-1: Search space of possible programs

Figures 4-2 and 4-3 illustrate two different solutions of the Rainfall Problem (Figure 3-1) and

their corresponding goal decompositions. We focus here on two specific aspects of the problem:8

(1) counting the valid inputs (daily rainfall greater than or equal to zero), and (2) counting theI number of rainy days (daily rainfall strictly greater than zero).

Figure 4-2 shows a fragment in which these two goals are realized directly. First, a COUNTER

VARLABLE PLAN is used to count the valid inputs; this is realized in the code that computes the

"There are other differences in the goal decompositions of these programs besides the ones mentioned here.
However, we will not analyze them in this discussion.

7

value of the variable Valid. Second, the GUARDED COUNTER VARIABLE PLAN is used for counting

the positive inputs; the variable Ru i ny is used in this plan.

While the program in Figure 4-3 also prints out the number of valid inputs and the nrmber of

positive inputs, the goal decomposition in this program is different. Instead of the two go.-i of

counting the valid inputs and counting the positive inputs, the program in Figure 4-3 uses t hree

goals to achieve the same end: (1) count the zero inputs, (2) count the positive inputs, and (3)

add these two counters together to derive the valid day total. The goal of counting the positive

inputs is implemented with a GUARDED COUNTER VARIABLE PLAN, operating on the variable

Rainy. The goal of counting the zero inputs is also implemented with a GUARDED COI'NTER
VARIABLE PLAN, operating on the variable Dry. The counters are combined with an ADD PARTIAL

RESULTS PLAN, resulting in the variable Va I i d.

4.2. Resolving Ambiguous Interpretations

If the mapping from problem descriptions to programs is to be rich enough to generate a

sufficiently wide variety of programs, ambiguity is an unavoidable consequence, i.e. two different

paths in the interpretation space can lead to the same program. This situation is exacerbated

when buggy programs are allowed: bugs add uncertainty to the analysis. For example. if one

encounters a statement Now := New+1 in a correct program, one can be fairly certain that It is

part of a counter plan. But if the program is buggy, as in Figure 1-1, one must also consider the

possibility that this statement is intended to input new values; the only way of determining

which is the proper role is by looking at the program as a whole and determining which
interpretation is more consistent with the interpretations of the other parts of the program. The

*. ability to enumerate and evaluate alternative interpretations is a key processing technique for a
"! system that attempts to understand buggy programs.

In Figure 4-4 we give an example of the results of PROUST's attempt to resolve ambiguous

interpretations. Figure 4-4 shows a fragment of code which might appear in a novice solution to

the Rainfall Problem in Figure 3-1. We have focused on the counter variables in the program,

Val id and Rainy; the rest of the main loop of the program is shown so that the surrounding

context may be seen. Instead of counting the positive inputs (Rain>0) and the valid inputs

(Rain>=O), this program counts the positive inputs and the zero inputs, and does not count the

valid inputs.

There are two possible interpretations for this code, each of which results in a different
explanation for the bugs. According to one interpretation, shown on the left side of the figlire.

the programmer intended to implement the valid input goal and the positive input goal directly.

The plans used are COUNTER VARIABLE PLAN and GUARDED COUNTER VARIABLE PLAN: t he

resulting variables are Va I i d and Re i ny, respectively. Ve I id appears to count only the the zero

L7
8

Plans Goal Decomposition

P1 a RV~NrNG TOTAL LOOP PLAN

1. Get input, etopping at 99999
2. Check that input is non -negative

Plan: COUN~TER VAR-ABLE PLAN 6. Count valid inputs
Plan: GUJARDED COUNTER VARIABLE PLAN 7. Count positive input*

PROGRAN Raini (INPUT. OUTPUT);
CONST STOP=99999;
VAR

SunRain,Ngx.Ave: REAL;
ValidRainy: INTEGER:

BEGIN
Writeln('Enter rainfall');
Sum:=O;
Vaid:0;-
Rainy:0O
N X:20;
Read In;
Read (Ra in);
WHILE RainC<'STOP

BEGIN
IF Rain(O THEN
Writeln(Rain:O.2. ' not a ssible rainfall. try again')

ELSE
BEGIN COM*4ER VARIABLE PLAN Cont valid input.

Sum: Sum+Ra in;

IF Rain>Nax THEN
Max:=N; VARDED C,^INTER VARIABLE Pt.AN4----"Count positive input*

IF Rain>O THEN
END; Rainy:zRainy+1;

Vriteln('Enter rainfall');
Read In;
Read(Ra in)

END;
Writeln.
Writeln(Valid:O.' valid rainfalls were entered.');
IF Valid',O THEN

4 BEGIN
Ave:2Sum/Val id;
Writeln('The average rainfall vas '.Ave:O:2, ' inches PER DAY.');
Writtln('The highest rainfall was ',Naa:O:2. ' Inches.');
WRITELN('There were '.Rainy:O.' rainy days in this period. '

'4 END
END.

Figure 4-2: Simple goal decomposition

-. 2

..9

Plans Coal Decomposition

Plan: RUNNJING TOTAL LOOP PLAN

1. Get input, etopping at 99999

Plan:2. Check that input ie non-negative

Pa:COUNTER VARIAeLE PLAN 6. Count zero input.
Plan: GUARDED COUNTER VARIABLE PLAN 7. Count positive input.

8. Comi~ine counters

PROGRAM Rain2 (INPUT, OUTPUT):
CONST ST0P-9999;
VAR SumRai,NMax.Ave: REAL;

Valid.Rainy.Dry: INTEGER;
BEGIN
Sum:=0.
Dry:. 0-

Rainfy 20.
Max 20.
Writeln('En rainfall');
Read In;
Read(Ra in):
WHILE Rain<O DO

BEGIN
Vriteln(Rain:0:2.' not a possible rainfall, try again'
Reed(Ra in);\

END:
*WHILE Rain<>STOP DO i

BEGIN
Sum:xSvm+Ra in:
IF Rain=O THEN 6 _

Dry :a Dry+*1 UARDED COUNTER VARIABLE PLAWO-''Count zero input.
ELSEmeN

Rainy: 2Ra iCy1 ARDED COUNTER VARIABLE PLAN Count positive inputs
IF Rain>Max THEN Max :2 Rain;
Valid := Rainy.Dry: _D PARTIAL RESULTS PLANaP CoMbine counter*
Writeln('Enter rainfall').
Read In;
Read(Ra in);
WHILE Rain<O DO

BEGIN
Writeln(Rain:0:22' is not a possible rainfall. try again');
Read(Ra in);

END;
END;

WriteIn;
Vriteln(V2lid:O.' valid rainfalls were entered.');
IF Valid)0 THEN

BEGIN
Ave:zSvm/Vml id;

* Writeln('The average rainfall was '.Av*:0:2,' Inches per day.');
Writeln('The highest rainfall was '.NAX:0:2.' Inches.');
WRITELN('There were '.Rainy:O,' rainy days in this period.

END
END.

Figure 4-3: Alternative goal decomposition

W W5. Lu .'. 77 '*' .'71,.. . -

10

Buggy Program Fragment

WHILE Rain-9999 DO

BEGIN
IF Rain'O THEN

Writeln('Input not valid'
ELSE

BEGIN
IF Rain= 0 271V

Valid := V4id+1
ELSE

BEGIN
Rainy := Raing-+v:

END;
Sum - Sum,,Raln.

END,
Writeln('Enter next value

Read(Rain).
END.

Avg a Sumn/Val id.

Goal Decomposition I Goal Decomposition 2

w goal: count all items goal: coant zero
goal: count positive items goal: count poitive#

| goal: combine partial counts

Bug: Bugs:

Missing copy of duplicated plan Mushed variables
segment Missing plan

Eaplanation to student: Eaplanation to student:

This program will not count the You are using the variable
number of inputs correctly 'Val id both to count the
You increment 'Valid' when total number of inputs and

the input is zero, but not when the number of zero inputs
it is positive Each variable should be used

to mean one and only one thing
Also. you are going to have to
add the zero count and the
positive count together

Figure 4-4: Alternative explananations for bugs

inputs, because the programmer intended to modify the COUNTER VARIABLE PLAN so that a copy

of the counter update appears in both the THEN branch and the ELSE branch of the inner IF

statement, and then left out one of the copies. The failure to update Va id in both branches

thus appears to be a low-level slip, such as a mistake in editing the source file.

In the other interpretation, on the right side of the of the figure, the program is assumed to

arise from a goal decomposition where the positive values and the zero values are counted

separately and then added together. The programmer uses the variable Va I i d to refer to the

count of zero values and Ra i ny to refer to the count of positive values. The plan to add Va I i d

and Ra i ny together is missing. We could claim that the plan is missing because of an editing 4lip.

.. ,.

However, the context in which the counter plans appear weighs against this hypothesis: the
average computation uses Valid in the denominator of the division, implying that Valid is the

valid input counter as well as the zero input counter. We call variables which are used in

contradictory ways such as this mushed variables. Mushed variables are very serious hugs: they

reflect radical deficiencies in the programmer's ability to design programs. Therefore this goal

decomposition is less highly valued than the previous goal decomposition. PROUST has a number

of heuristics for deciding among alternative interpretations such as these.

5. The Understanding Process: An Example Of PROUST In Action
In the preceding sections, we (1) described what difficulties a program understanding system

must overcome in order to analyze a program accurately, and we (2) gave an example of the

results of PROUST's analysis. In this section, we will illustrate PROUST's processing capabilities.

First we will describe the overall strategy by which PROUST searches through the space of

potential interpretations for one that best accounts for the student's program, and then we will

describe how PROUST actually produces the analysis already depicted in Figure 4-4.

5.1. Searching the Interpretation Space
Clearly, one can't possibly enumerate beforehand the space of program interpretat ions: there

are just too many ways to construct correct and buggy programs. Rather. starting with the

problem specification and a database of correct and buggy plans, transformation rules 9. and bug-

misconception rules, PROUST constructs and evaluates interpretations for the progranm under

consideration. In effect, the goal decomposition and the plan analysis of the program evolve

simultaneously. To constrain the generation process, PROUST employs heuristics about what

plans and goals are likely to occur together.

The evaluation process is prediction driven: based on the current candidate interpret st ion for

the program, how well do other parts of the program conform to PROUST's expectation.? For

example, if, in a program that attempts to solve the Rainfall Problem, PROUST has assumed that

the variable Count is keeping track of the number of valid days, PROUST would expect to see

Count in the denominator of the average daily rainfall calculation. If this expectation is

confirmed, then PROUST is more confident of its interpretation, and vice versa. PROUST employs

heuristics that evaluate matches, near-misses, and misses of its expectations. Exam ple% of

construction and evaluation processes will be given in the next section.

The fact that PROUST constructs and evaluates interpretations anew for each progr'im. and

gThese entities will be explained shortly.

.6
['.

12

does not rely on a prestored set of possible interpretations, provides it with an important

capability: PROUST readily generates interpretations for programs that it (and we) have not seen

previously. That is, unlike some diagnostic systems that effectively choose a fault from a .et of
predefined faults, [16, 4] PROUST actively constructs diagnoses. Given the variability in programs,

*' PROUST needs such a capability in order to be effective.10

5.2. Putting It All Together: Two Examples

Sun := 0;
Rainy :0 0;
Valid : 0:;

Max :: 0;

Read(Rain);

WHILE Rain<>99999 DO
BEGIN

IF Rain<O THEN
" ' Writeln('Input not valid'

ELSE
BEGIN
IF Rain=O THEN (a)
Valid := Valid+1 (b)

ELSE
BEGIN

Valid Valid+l; (C)
Rainy Rainy*l;

END.
.Sum :a Sum Rain;

IF Rain>Nax THEN

" Max :a Rain;
END:

Writeln('Enter next value:');

Read(Rain).

END;
Avg := Sum/Valid;

Figure 5-1: Excerpt of Rainfall Program

In this section we will illustrate how PROUST actually goes about analyzing a program. We

will show two examples; one is a correct program and the other is a buggy program.

5.2.1. Analysis of a correct program

Our first example, in Figure 5-1, is an excerpt from a correct solution to the Rainfall Problem

in Figure 3-1; it is based on the program fragment shown in Figure 4-4. Although this prog-ram

functions correctly, there is one construction which is unusual; the valid input counter Va I i d is

updated in two places instead of one. That is, Va I i d is updated in each branch of the condit ional

10FALOSY [141 is also capable for recognizing novel faults: however, it assumes that there is only one fault. Ahi-h thp
programmer must describe beforehand.

• .- 7 . ._ . . : .i,- ::

13

statement at (a); the update at (b) is executed when Rain is zero, and the update at (c) when

Rain is positive. The program in this figure illustrates the variability possible in programs:

".. coping with this type of situation requires additional machinery, as will be seen shortly.

Assume that PROUST has carried out a partial plan analysis of this program alrealy. atid has

made the following tentative assumptions:

e the variable Sum is the running total variable,

• the variable Va I i d keeps tracks of the number of valid days,

" the update on Valid should be in the loop, embedded inside a test for negative
rainfall (IF Rain < 0 THEN).

The processing that continues from this point is illustrated in Figure 5-2. PROUST maintains an
agenda of goals that remain to be worked on; at this point in the analysis the agenda includes the

Count goal for valid inputs, the Sum goal, and the Count goal for positive inputs, to name a few.

PROUST selects the first goal on the agenda, as shown at (a), checks that it is ready for analysis.
and then determines whether or not it needs to be decomposed. The entry in the knowledge base

for Count stipulates that it is most commonly implemented in an undecomposed rashion. so
Proust consults the plan database looking for appropriate plans for realizing this goal. It rinds

only one plan plan: the COUNTER VARIABLE PLAN (b). It then makes tentative binding% Port he

plan variables, and determines where each segment of the plan should be found. The resulting
structure, shown at (c), can then be matched against the student's program.

Figure 5-3 shows the results of matching the instantiated plan against the code. There is a

unique match for the initialization step of the plan, but instead of there being one match for the

update step, there are two matches. Furthermore, PROUST expects the update to be at -top

level" inside the loop, i.e. it should not be enclosed inside code which might disrupt its function.

Instead it discovers that each update is enclosed in an IF statement which restricts its

application. PROUST treats the plan as a near-match for the program, but the plan cannot be

accepted until the match discrepancies are accounted for.

PROUST has a number of different methods for explaining a plan difference; one of them ic to

use transformation rules to relate the code to the plan. One such transformation is shown in

Figure 5-4.11 Each transformation rule has a test part and an action part. The test part consists
of a conjunction of micro-tests. each testing various aspects of the program; the action part

usually indicates how t~o modify the code in order to nullify the effect of the transforma tion. In

this case the Distribution Transformation Rule applies. This is a rule for recognizing plans in
situations where a set of computations have been divided into parts using a CASE statement or an

*-'.. I1PROUST currently has 15 such transformations in its database. Some rules. such as the r'--b'i,
Transformation Rule, are quite general: others, such as the transformation which changes Val id<>O into vi! ,- !F
Val id is a counter variable, are plan specific.

.

14

Agenda of Goals

goa: Count(fNw-Rai n, fCo.flnVa I d)
go&(: Sum(?Nev--Ra I, t. otal=S.M)
goal: Count(fNn..Ra in, .t. !fN.>O)

a) goal selection

, goal: Co nt(fCo ut=Va I Id)

b) plan retrieval

4
Counter Veasige Ra

fait step: ?Coun a 0
Update step: lCount a ?Count*l

tentative variable bindings

l'04ntsyal id

Counter Variable PIaS*

fait step: Valid a 0

(abowc WHILE loop)
Vjpdatestep: Valid = Valid*1

(in WHILE loop abo e Read)

Figure 5-2: Simple mapping from goals to instantiated plans

IF-THEN-ELSE construct, and where the plan update is duplicated so that a copy appears in each

branch. The control flow branches in this case are the two branches in the IF-THEN-ELSE

construction which test for Re i nfO and Rai n>O. The rule checks to see whether there is exactly

one Val id:fVal id+1 statement for each possible branch of the test. It then combines the two
updates and moves the result to an appropriate place outside of the test. Once this is done the

counter plan matches successfully.

5.2.2. A buggy example
We will now show how PROUST analyzes the buggy program shown in Figure 4-4: a more

complete version is given in Figure 5-5. When PROUST analyzes buggy programs such as th-,. it

goes through much the same process that it goes through in analyzing correct programs: the II:tin

difference is that PROUST must consider more alternative interpretations in order to find the riost

% ,~. *,*..******-% %*** . . .-...

'5

SuN 0;
Valid : V,. valid 0 nit step:
Rainy 0; EXACT MATCH
Max := 0;
Read(Rain);
WHILE Rain<>gg999 DO

BEGIN
IF Rain<O THEN

Writeln('Input not valid')
ELSE
BEGIN
IF RainfO THEN

Valid := Valid+I-s Valid Valld+1 Update step:
ELSE IWO MATCHES; BOTH EMBEDDED INSIDE

BEGIN UNEXPECTED CODE
Valid Valid+1,

Rainy Rainy+1;
END;

Sum := Sum+Rain;
IF Rain>Nx THEN

Max := Rain;

END;
Writln('Enter next value:');
Read(Rain);

END;
Avg : Sum/Valid;

Figure 5-3: Plan matching

IRiEalid := Valid+1;
IF Ra i n--O THEN IF Rain=O THEN

Valid := Valid ---- M ()
ELSE BEGIN; ELSE BEGIN;

VaI id :Valid+1;- €{}
Rainy : Rainy+1; Rainy := Rainy+1;
END; END;

Figure 5-4: Program transformation

plausible explanation for the bug.

Figure 5-6 shows what happens when the COUNTER VARIABLE PLAN is matched against t his

program. This time there is one good match for the counter update; unfortunately it is inside of

an unexpected IF statement. The Distribution Transformation Rule is invoked to explain the

plan difference, but it predicts that there should be two updates, so it does not fully explain the

problem. PROUST therefore looks for another rule which will explain the difference betwee'n the

prediction made by the Distribution Transformation Rule and the observed code. A rule applie%
which states that if an single instance of duplicated code is missing, it is explainable as a low-

level slip. This completes the mapping from the plan to the code.

Whenever an interpretation presumes the presence of a bug, it is necessary to make sure th:t

'j

,...

Ii0
*5 7

Sun 0;
Rainy 0;
Valid : 0;
max :: 0;
Read(Rain);

WHILE Rain<>99999 DO
BEGIN
IF Rain<O THEN

Writeln('Input not valid')
ELSE

BEGIN
IF Rain=O THEN
Valid := Valid+1

ELSE
BEGIN

Rainy := Rainy+1;
END;

Sum := Sum+Rain;
IF Rain>Max THEN

Max := Rain;

END;
Writeln('Enter next value:'),
Read(Rain);

END;
Avg := Sum/Valid;

Figure 5-5: A buggy program

there are no other interpretations which presume fewer or less severe bugs. PROUST therefore

goes back and looks for another way of of implementing the Count goal. PROUST has in its

knowledge base an alternative method for decomposing Count goals, namely to implement
counters for particular intervals and then combine the partial counts. One or these subgoals can

be unified with the Count positives goal that already exists in the agenda. The two Count goals

are thus transformed into a set of three goals. Plans can then be chosen and instantiated for

earh of these goals, as was done in Figure 5-2. The result plans, and the results of matching

them, is shown in Figure 5- This time two match errors are found. First, Va I id is the counter

for zero values; but the average predicts that Va lid is the main counter, Valid is a mushed

variable. Second, the ADD PARTIAL RESULTS PLAN is missing altogether. PROUST ranks bugs

according to their severity; missing plans that do not pertain to some boundary condition are

moderately severe bugs, and mushed variables are extremely severe bugs. Therefore this

interpretation is less highly valued, and the analysis involving the transformation holds.

-.

. . * ** ** . .

17
r.

Sum : 0;
Valid := 0; Valid =0 Initatep:
Rainy 0; EXACT MATCH
Max := 0;
Read(Rain)
WHILE Ra in<>99999 DO

BEGIN
IF Rain<O THEN

Vriteln('Input not valid')
ELSE

BEGIN
IF Rain=O THEN

Valid := Valid+l - Valid := Valid+l Update step:
ELSE predicted 6y distribution transformation

BEGIN
Ra'iny := Rainy+l; Valid Valid+l Update 8tep:

END; ??? condition for transformation violated
Sum := Sum Rai n; EXPLANATION: low-level slip
IF Rain>Max THEN

Max := Rain;
END;

Writeln('Enter next value:');
Read(Rain);

END;
Avg := Sum/Valid;

Figure 5-8: Transformation with bugs

6. Performance - Preliminary Results

As a preliminary test of PROUST's capabilities, we tested PROUST on 206 different novice
solutions to the Rainfall Problem shown above. We collected these programs by modifying the

Pascal compiler used by the students in an introductory programming course so that each
syntactically correct version of the program was stored on tape [2]. We ran PROUST on the first

syntactically correct version from each student, so that we could see how PROUST behaves when

raced with a large number of bugs.

In Table 8-1 we see how PROUST performed on this corpus of programs. Of the 206 programs

in the sample, PROUST only commented on 137 of them (87%). The remaining 33% PROUST

decided that it didn't understand the program well enough to make a reasonable assessment of

the bugs. Thus, rather than venturing a guess, PROUST remained silent. On those programs
that it did feel confident of its analysis, it was correct almost 2 94% of the time! In an

educational setting, we felt that no advice was better than bad advice. Thus, we built into

12There were still 32 "alse alarms:" cases where PROUST said there was a bug, but there really wasn't.

.I -

747V IT W. Vr1 -. W. r. 77 77- 7

18

Sum 0; Guarded Counter Variable Plan
Valid 0;y (dry day counter)

• ;.'Ra iny 0

Max : 0 Init step: ?Count := 0
Read(Rain Guard step: IF Rain = 0 THEN

Update step: ?Count := ?Count + 1)
WHILE Raln<>99999 DO MUSHED VARIABLES!

BEGIN

Writaln('Input not ')Guarded Counter Variable Plan
*ELSE (rainy day counter)

. IF Rain=O THE 'nit step: ?Count := 0
Valid : Valid. stGuard ep: IF Rain > 0 THEN

ELSE- - .Update step: ?Count := ?Count + 1
BEGIN
Rainy :Rainy+l;O

"

END;
Sum := Sum+Raln; Add Partial Results Plan
IF Rain>Max THEN

Max := Rain; Update step: Valid : l(?Sul + ?Sum2)
END; [Sum1 =Va lid, fumRa i nyJ

Writeln('Enter next value:'); MISSING PLAN!
Read(Rain);

END;

Figure 5-7: Matching alternate plans

PROUST a number of heuristics that it would use to assess its confidence in its analysis. From

the data in Table 8-1, it seems that when PROUST thought it had a good analysis, it was indeed

correct.

Total number of programs: 206

PROUST actually gave complete bug reports for 137 programs (67%)

*l Total number of bugs (from 137 programs) 444

Bugs recognized correctly: 419 (941)
Bugs not reported: 25 (61)
False alarms: 32

Table 6-1: Preliminary results

Clearly, the next stage is to improve PROUST's overall performance. Moreover, in looking at

the cases where PROUST failed, we see no fundamental obstacle to getting PROUST up to the

80% overall correct rate. However, we can can characterize the kinds of programs which will

alw'aye cause problems for PROUST as follows: 1) very unusual bugs, which occur too

infrequently to justify inclusion in PROUST's knowl'.dge base, 2) programs which contain novel

plans which PROUST has no means for predicting, 3) ambiguous cases which can only b

resolved through dialog with the student. For these cases, we would suggest that the student see

19

a h man teacher.

7. Concluding Remarks
Is all the machinery described in this paper necessary in order to understand buggy and correct

programs -- programs that are only about I page in length? The answer, in our minds at least., is:
undeniably yes. If anything, PROUST is the minimum that is required! The basis for this

conclusion is twofold:

1. In Artificial Intelligence research, systems have been built to understand stories of
moderate length that require machinery similar to that employed by PROUST. [13, 5)
Certainly, programs are as complicated an entity as are stories.

2. We attempted to build a bug finding system that used a database of bug templates
in a context-independent fashion to analyze programs similar to those analyzed by

,* PROUST. That system, MENO, [181 failed miserably: in order to cope with the
variety and viriability in actual programs, a system must be able to understand how

.% the pieces of the program fit together - which is a highly context-dependent process.

Finally, all programmers intuitively know that the mapping from problem specifications to
code is a complex process. What PROUST has done -- which we feel is its major contribution -- is

lay that mapping process open to inspection: since PROUST constructs a program in its attempt

to understand the program under analysis, we can "see" the programming process in action. fly
making the programming process explicit, our work joins with that of the software engineering

community to change programming from an ethereal art to an object of scientific inquiry.

%-

'A-

-.

20

I. Proust's analysis of a sample program

1 PROGRAM RAINFALL (INPUT .OUTPUT);

2
3 CONST

4 SENTINEL = 99999;

5
6 VAR

7 RAINFALL, VALID. HIGHEST. AVERAGE. TOTAL REAL;
8 RAINDAY : INTEGER;
9 BEGIN

10 (*INFORMATION IS ENTERED INTO THE TERMINAL)
11 WRITELN('PLEASE ENTER THE AMOUNT OF RAINFALL FOR EACH DAY SEPERATLY');
12 WRITELN('THIS PROGRAM WILL THEN FIGURE OUT THE AVERAGE. HIGHEST. TOTAL');
13 WRITELN('NUMBER OF RAINY DAYS. AND THE NUMBER OF VALID RAINY DAYS ENTERED');
14 WRITELN('PLEASE MAKE SURE THE NUMBERS ARE POSITIVE');
15 WRITELN('ENTER RAINFALL');

16 READLN;
17 READ(RAINFALL);

18

19 (WTEST FOR INVALID ENTRY.)
20 IF RAINFALL (0 THEN
21 WRITELN('THE DATA IS IMPOSSIBLE PLEASE CHECK AND REENTER DATA');
22 WRITELN('PLEASE REMEMBER THE NUMBERS MUST BE POSITIVE');

23 READLN;
24 READ(RAINFALL);
25
26 (*IDENTIFICATION AND CALCULATIONS*)
27

28 BEGIN
29 WHILE RAINFALL <> SENTINEL DO

30 IF RAINFALL) HIGHEST THEN
31 HIGHEST :2 RAINFALL;
32 TOTAL := RAINFALL + TOTAL;
33 IF RAINFALL >z 0 THEN
34 VALID := VALID + 1;

35 IF RAINFALL , 0 THEN
36 RAINDAY :a RAINDAY + 1;

37 END;
38 REPEAT
39 UNTIL RAINFALL = SENTINEL;

40
41 (*FIND AVERAGE.)
42 AVERAGE := (TOTAL / VALID);
43

44 ('PRINTS OUTPUT.)
45 WRITELN(' '.VALID:2.'VALID RAINFALLS WERE ENTERED.');
46 WRITELN('THE AVERAGE RAINFALL WAS'.AVERAGE:8:2.'INCHES PER DAY');

47 WRITELN('THE HIGHEST RAINFALL WAS'.HIGHEST:8:2.'INCHES');
48 WRITELN('THERE WERE'.RAINDAY:2.'RAINY DAYS IN THIS PERIOD')

49 END.

t4 * * . - ... ~~*,..,

21

Bug Report

1. The WHILE statement at line 29 and the BEGIN statement at line 29

are reversed. The BEGIN should come after the WHILE.

2. Your main loop is missing a READ statement. As it stands your loop will
process the same input value over and over.

Perhaps you intended line 24 to serve this purpose. If so, there may

be a bug there.

3. You left out the initialization for the variable VALID.

4. You left out the initialization for the variable TOTAL.

5. You left out the initialization for the variable RAINDAY.

6. You left out the initialization for the variable HIGHEST.

7. You need a test to check that at least one valid data point has been

input before line 42 is executed. The average is not defined when

there is no input.

8. You need a test to check that at least one valid data point has been

input before line 46 is executed. The average is not defined when

there is no input.

9. You need a test to check that at least one valid data point has been
input before line 47 is executed. The maximum is not defined when

there is no input.
Perhaps you intended line 33 to serve this purpose. If so, there may

be a bug there.

10. Your test for valid input at line 20 won't work, because it's outside

the main loop. Remember that you have to test ALL the input for validity.

11. The loop at line 39 doesn't do anything; it will loop forever.

In particular, it will not make the program loop back to the beginning,
if that is what you had in mind.

-.

*

22

References

1] Bonar, J. and Soloway, E.
Uncovering Principles of Novice Programming.
1983.
SIGPLAN-SIGACT Tenth Symposium on the Principles of Programming Languages, in

press.

[2] Bonar, J., Ehrlich, K., Soloway, E.
Collecting and Analyzing On-Line Protocols from Novice Programmers.
Behavioral Research iethod. and Instrumentation 14:203-209, 1982.

[31 Brown, J. S., Burton, R. R., and de Kleer, J.
Pedagogical, Natural Language and Knowledge Engineering Techniques in SOPHIE I, I1.

and III.
In Sleeman, D. and Brown, J. S. (editors), Intelligent Tutoring Sgstems. Academic Pre,

New York, 1981.

[4] Clancey, W. J., Bennett, J. S., and Cohen, P. R.
Applications-oriented AI Research: Education.
Technical Report HPP-79-17, Stanford Heuristic Programming Project, July, 1979.

[5] Dyer, M.
In-Depth Understanding.
Technical Report 219, Computer Science Department, Yale University, May, 1982.

[81 Ehrlich, K., Soloway, E.
An Empirical Investigation of the Tacit Plan Knowledge in Programming.
1983.
in Human Factors in Computer Systems , J. Thomas and M.L. Schneider (Eds.), Ablex

Inc., in press.

[7] Genesereth, M. R.
The Role of Plans in Intellegent Teaching Systems.
In Brown, J. S. and Sleeman, D. (editors), Intellegent Tutoring Systems. New York. 1981.

[8] Goldstein, I. P.
The Genetic Graph: a Representation for the Evolution of Procedural Knowledge.
Int. J. of Man-Machine Studies 11:51-77, 1979.

[9] Johnson, L., Draper, S., and Soloway, E.
An Effective Bug Classification Scheme Must Take the Programmer into Account.
1983.
SIGPLAN/SIGSOFT Workshop on High-Level Debugging, in press.

[10] Johnson, L., Draper, S., and Soloway, E.
Classifying Bugs is a Tricky Business.
1983.
NASA Workshop on Software Engineering, in press.

K::!?

23

[11] Miller, M. L.
A Structured Planning and Debugging Environment for Elementary Programming.
Int. J. of Mfan-Machine Studies 11:79-95, 1978.

(12] Rich, C.
A Formal Representation for Plans in the Programmer's Apprentice.
In Proc. of the Seventh Int. Joint Conf. on Artificial Intelligence, pages 1044-1052.

ICJAI, August, 1981.

[13] Schank, R. and Abelson, R.
Scripts, Plans, Goals, and Understanding.
Lawrence Eribaum, Hillsdale, New Jersey, 1977.

[14] Sedlmeyer, R. L. and Johnson, P. E.
Diagnostic Reasoning in Software Fault Localization.

.. In Proceedings of the SIGSOFT Workshop on High-Level Debugging. SIGSOFT,
Asilomar, Calif., 1983.

'[15] Shapiro, D. G.
Sniffer: a System that Understands Bugs.
Technical Report Al Memo 638, MIT Artificial Intelligence Laboratory, June, 1981.

[18] Soloway, E., Rubin. E., Woolf, B., and Bonar, J.
MENO-II: An Al-CAI Programming Tutor.
1983.
Journal of Computer-Based Instruction, in press.

[17] Soloway, E., Ehrlich, K., Bonar, J., and Greenspan, J.
What do Novices Know about Programming.
In A. Badre and B. Shneiderman (editor), Directions in Human-Computer Interaction,.

Ablex Inc., Norwood. New Jersey, 1982.

[18] Soloway, E., Ehrlich, K., Bonar, J.
Tapping Into Tacit Programming Knowledge.
In Proceedings of the Conference on Human Factors in Computing Systems. NBS,

Gaithersburg, Md., 1982.

[19] Soloway, E., Ehrlich, K., and Gold, E.
Reading a Program Is Like Reading a Story (Well, Almost).
In Proceedings of the Cognitive Science Conference, 1983. Cognitive Science Society.

Rochester, N.Y.. 1983.

(20] Soloway, E., Bonar, J., and Ehrlich, K.
Cognitive Strategies and Looping Constructs: An Empirical Study.
1983.
Communications of the ACM, in press.

[21] Wescourt, K. T., Beard, MI., Gould, L.. and Barr, A.
Knowledge-based CAI: CINS for Individualized Curriculum Sequencing.
Technical Report 290. Stanford Institute for Mathematical Studies in the Social Sciences.

Psychology and Education Series, October. 1977.

i '

7_7

- OFFICIAL DISTIRUBTION LIST -

A ray Private Sector

Technical Director 1 copy Or Mtchael Cenesereth I copy

U S Army Research Institote for the Department of Computer Science

Behavioral and Social Sciemces Stamford University
5001 Eisenhower Avenue Stamford. California 94305

Alexandria. Virginia 22333
Dr Dere Geatmer I copy

Mr Jais Baker 1 copy soft Berattk a bgweSs
Army Research Institute 10 Moulton Street

5001 Eisenhower Aveve Cambridge. Massachusetts 02138

Alexandria. Virginia 22333
Dr Robert Olaser I copy

Dr Beatrice J Farr 1 copy Learsiag Research & Development Center

U S Army Research Institute University of Pittsburgh
5001 Eisenhower Avenue 3939 O'Hara Street

Alexandria. Virginia 22333 Pittsburgh. Pennsylvanoa 15260

Or Milton S Katz 1 copy Dr Joseph Gogoee I copy

Williams Technical Area SRI International

U S Army Research Institute 333 Ravenswood Aveave

5001 Eisenhower Avenue Menlo Parh. California 94025

Alexandria. Virgi n 22333
Or Bert Gre I copy

or Marshall Narva 1 copy Johns Hot% University

U S Army Research Institute for the Department of Psychology

Behavioral & Social Sciences Charles A 34th Stieet

5001 Eisenhower Avenue Baltimore. Mlryllnd 21218

Alexandria. Virginia 22333

Dr Harold F O'Neil. Jr I copy Dr James C Grieeo I copy

Director. Training Research Lab LROC

Army Research Institute University of Pittsburgh
5001 Eisenhower Avenue 3939 O*Nara Street

Alexandria. Virginia 22333 Pittsburgh. Pennsylvania 15213

Commander, US Army Research Institute I copy

for the Behavioral A Social Sciences Dr Barbara Hayes-Roth I copy

Attn PERI-IR1 (Dr Judith Orasanu), Department of Computer Science

5001 Eisenhower Avenue Stanford University

Alexandria. Virgimia 22333 Stanford. California 95305

Joseph Psotka. Ph D I copy Dr Frederick Hayes-Roth I copy

Attn PER*I-C Tehkowledge

Army Research Institute 525 University Avenue

5001 Eisenhower Avenue Palo Alto. California 94301

Alexandria. Virginia 22333
Glens Creenwald. Ed

Dr Robert Sasmor I copy Human Intelligence Newsletter 1 copy

U S Army Research Institute for the P 0 Box 1163

Behavioral and Social Sciences Birmingham, Michigan 48012

5001 Eiseteiler Avene

Alexandria. Virginia 22333 Dr Earl Hunt I copy
Department of Psychology

Or Robert VllShr I copy University of Wishiogton

Army Research Institute Sesttle. Washington 96105

5001 Eisenhower Avoene
Aleanldria. Virginia 22333 Dr Marcel Just I copy

'. Department of Psychology
Carnegle-fellon University
Pittsburgh. Pennsylvania 15213

d%

7. .-. 7- .

Air Force

U S Air.Force Office of Scientiafic I copy

Research Dr David Kiengs I copy

Dr Earl A Alluss I copy Dr Walter Kietsch 1 copy
P4Q AFHOL (AFSC) Department of PsychologyIBrooks AFB. Taeas 78235 Unreersity of Colorado

* Bran Dllmn 1 opyBoulder. Colorado 30302

01AFHRLAPT Or Stephen Losslyn copy
Lowry AFB. Colorado 80230 Department of Psychology

The Jlohn Hopkins University
Or Genevieve Haddad I copy Baltimore. Malryland 21216
Program Manager
Life Sciences Directorate Dr Pat Langley 1copyp AOS R D T~1cp he Robotics Institutet

AFOSM/IL Dr Jill Larkin 1 copy
Bolling AFB. DC 20332 Department of Psychology

Carnetgie-,1e1llon University
Dr Joseph Yasatule I copy Pittsburgh. Piensylvasia 15213
AF4RL/LRT
Lowry AFB. Colorado 80230

Dr Alsn Lesgold Icopy
Ma1rine Corps Learning R&D Center

Usiversity of Pittsburgh
H William Oreenup 1 copy 3939 O'Hara Street
Edicationa Advisor Qi031) Pittsburgh. Pennsylvania 15213
Education Center. MCDEC
Quantico, Virginia 22134 Or Jim Levis I copy

University Of California
Special Assistant for Marine I copy at San Diego
Corps Matters Laboratory for Comparative
Code looM Human Cognition - D003A
Office of Naval Research La Jolla, California 92093
600 N Quincy Street
Arlington, Virginia 22217 Dr Michael Levine I copy

Department of Educationail Psychology
Dr A L Slafkosky 1 copy 210 Education Bldg
Scieptific Advisor (Code RD-I) University of Illinois
NQ. U S Marine Corps Champaign, Illinois 61801
Walshington. DC 20380

Dr Marcia Lie 1 copy
Department of Defense University of California

Director. Adolescent Reasoning Project
Defense Technical Information Center 12 copies Berkeley, California 94720
Cameron Station. Bldg 5

*Alenvandria, Virginia 22314 Dr Jay McClelland 1 copy
*Attn IC Department of Psychology

MIT
Military Assistant for Training and 1 copy Cambridge, Massachusetts 02133
Personnel Technology
Off re of the Under Secretary of Deftese Or James R Miller 1 copy
for iesearck A Engineering Computer Thought Corporationl
R oon. 3D129, The Pentagon 1721 West Piano Highway

£Wasinigton. DC 20301 Pisno. Togas 75075

Major Jack Thorpe 1 copy Dr Mark Miller Icopy
DARPA Copter Thought Corporatiosl
1400 Wilson Blvd 1721 West Piano Highway
Arlington, Virgina 22209 Piano. Tegas 75075

ej I.-... 22. i 2 ~ ± " 's .**** *. - ..-. :-

Navy Dr Toe Nors I copy
Xerou PAC

Robort hers I copy 3333 Coyote d11l bad
Code I711 Palo Alto. California 34304
Nems Factors Laboratory

DAVTRAEQUIPCEN Or Allot Near* I copy
Orlando, Florida 32313 Behavioral Technology Laboratories

1945 Elue Ave***. Fourth Floor

Code 3711 1 copy Redondo Beach. California 90277
Atts. Artbhr S Ulees

Naval Training Eq;Ipmt, Ceater Dr Donald Norman I copy
Orlaado. Florida 82513 Cognitive Science. C-OIS

Univ of California, See Diego
Limss Scientist1 copy Lo Jolla, Californa 92003

Office of Naval Research
Branch Office. Loado1
Bolx Or Jesse Orlaasky I copy
FPO wYo York. New York 03810 Iustitte for Defense Analyses

1801 N esregard Street
Dr Richard Caatoae I copy Alexaudria. Vrgina 22311
Navy Research Laboratory
Code 7510 Professor Seymour Papert I copy

"' vshl igtoa. C 20375 20C-109
MIT

Chief of Naval Education sad Training I copy Cambridge. Nassachasetts 02139

Loison Office
Air Force Noea Resource Laboratory Or Nasey Peaaaogtoa I copy
Operatios Trotig Devision Usiversity of Chicao
WILLIAMS AFI. Arizoa 95224 Graduate School Ot Beaiaess

1101 E 59th Street
Chicago. Illinois 60137

Or St ley Collyor I copy Or Richard A Pollak 1 copy
Office of Naval Technology Director. Special Projects
300 1 Q necy Street HECC

Arlington. Virginia 22217 2354 Niddes Valley Loae
Stillwater. N0aesota 55082

CDR Pike Corra 1 copy
Office of Naval Researck Dr Peter Polson 1 copy
800 1 Quiacy Street Departeast of Psychology
Code 270 University of Colorado

"* Arligtoo. Virgieia 22217 Boulder. Colorado 60309

Or Jobs Ford I copy Dr Fred Reif I copy
Navy Personnel RID Cater Physics Deportatmi
Sao DCe o. California 92132 Uiversity of Califorma

Berkeley. Caloforna 94720

Dr Jade Franhlin * I copy

Code 7510 Dr Leare Resnck 1 copy
Navy Research Laboratory LROC

"asingtoo. DC 20375 University of Pittsbergh
3033 O'Nlra Street

Dr Pike Gaynor 1 copy Pittsburgh. Peansylvana 15213
Navy Research Laboratory

Code 7510 Nary S Riley I copy
Washington. K 20375 Program is Cognitive Sciesce

Caster for Hamn Isformaton Processing
j Dr Jim 6lla4 1 copy Unaversity of Califora. See Diego
SJ COd 14 La Jolla. Califorais 32093

Navy Persoesel R&D Coster
Sao Diego, California 32132 Or Asdrew Rmoe I copy

American lostlutues for Research

Or Ed Natelias I copy 1055 Thomts Jefferson SWreeat. N
levy Personnel RAD Coster Wimhagtos. KC 20007
So@ loegpoe. C¢liferse i2152

.,%.

,4

[: .4

-4-- -' .- . -i - . + - _ - ,- . - • • *

Or Ernst Z Rothbopf I copy
Or Norman J Kerr I copy Sell Laboratories
Chief of Naval Technical Training lvrray Hill, lew Jersey 07974

.+, Naval Air Station Memphis (75)

S. Millingono. Tennessee 38054
:-"Or Wiliam B Rouse I copy

Dr Jais Lester I copy Georgia Tastitnte of Techeology
OMR Detachment School of Indvstrial A Systems
495 Sumer Street Engineering
Boston. Massachvsetts 02210 Atlant. Georgia 30332

Or William L Maloy (02) 1 copy Or David Rnmelbart I copy
Chief of Naval Education and Training Center for Hummn liformatioe Processing
Naval Air Station University of California, Sao Diego
Pensacola. Florida 32506 La Jolla. Californta 92093

Dr Joe McLachlan I copy Dr Michael J Samets I copy
Navy Personnel R&D Center Perceptronics. Inc
San Diego. California 92152 6271 Variel Avenue

Woodland Hills, California 91364

Or Roger Schank I copy
Dr William Montague 1 copy Yale University
NPRDC Code 13 Department of Computer Science
San Diego. California 92152 P 0 Box 2156

New Haven. Connecticut 06520

Library. Code P201L 1 copy
Navy Personnel RID Center Or Walter Schneider I copy

': San Diego, California 92152 Psychology Departqent

603 E Daniel
Technical Director I copy Champaign. ,llinois 61320
Navy Personnel R&D Center
Saf Diego, Cattforaia 92152 Or ASla Schoeefeld I copy

Mathematics and Education
Commanding Officer 6 copies The University of Rochester
Naval Research Laboratory Rochester. New York 14627
Code 2627

* Washington. DC 20390 Mr Colan Sheppard I copy

Applied Psychology Unit
Office of Naval Research 1 copy Admiralty Mlaria. Technology Est
Code 433 Teddington. Middlesex
800 N Guincy Street United Kingdom
Arlington, Virginia 22217

Or H Wallace Sinaiko 1 copy
Personnel I Training Research Group 6 copies Program Director
Code 442PT Manpower Research and Advisory Service
Office of Naval Research Smithsonila Institution
Arlington. Virginia 22217 801 North Pitt Street

Alexandria, Virginia 22314
• Office of the Chief of Naval Operations I copy
* Research Doevlopment A Stndies Branch Dr Edward E Smith 1 copy

OP 115 Bolt Beranek & Newman
Washington. CC 20350 50 Moaltoa Street

Cambridge. Mafssachusetts 02136
L? Frank C Petho. MSC. USI (Ph 0) 1 copy
CUET (R-432) Dr Richard Snow 1 copy
111IAS School of Education
Pensacola. Florida 12503 Stlnford University

Stanford, California 94305
Or Gary Pooch I copy
Operations Research Development
Code 55PK Dr Kathryn T Spoehr I copy
Navel Postgrldvate School Psychology Department
Monterey, California 13940 Brown Uoiversity

Providence, Rhode Island 029124g

4*

Dr Gil Ricard 1 copy
aCod# N711 Or Robert Sternberg 1 copy

NTEC . Department of Psychology
Orlando. Florida 32813 Yale University

Box 11A. Yale Station-
Dr Worth Sasland 1 cop, NWw Havel. Connecticut 0620
CNET (N-5)
RAS. Peesacolo. Florida 32508 Or Albert Stevens 1 copy

Bolt Beranch A Neumas
10 Moulton Street

Or Robert G Smith 1 copy Cambridge, Massachusetts 02238

Off ice of Chief of Naval Operations Dvd W; h01cp

760 l Spiaghouse Road
Dr Alfred F Smode. Director 1 copy McLean. Virginia 22102
Training Analysis A Evaluation Group
Department of the Navy Or Patrick Suppes I copy

Orlando. Florida 32813 Institute for Mathematical Studies io

Dr Richard Sorensen 1 copy Stanford University

Navy Personnel R&D Center Stanford, California 84305L San Diego. California 92152
Dr Frederick Steinheiseur I copy Computer Based Education Research Lob

dNO - OPI15 252 Engineering Research Laboratory
Navy Annex Urbana. Illinois 61801
Arlington, Virginia 20370

Dr Maurice Tatsnoka I copy
Roger Weissinger-Baylon I copy 220 Edncation Bld&
Department of Administrative Sciences 1310 S Sixth Street
Nanal Postgraduate School Champaign. Illinois 61920
Monterey. California 93940

Or Perry W Thoradyhe 1copy
Mr John H Wolf# 1 copy Perceptron ics. Inc

*.Navy Personnel R&D Center 545 Middlefield Road. Suite 140
San Diego, California 32152 Menlo Park, California 34025

Or Wallace Wulfeck. III I copy Dr Douglas Town* I copy
Navy Personnel R&D Center University Of SO California
San Diego, California 32152 Behavioral Technology Labs

1845 S Elea Avenue
Private Sector Redondo leach, California 30277

Dr John R Anderson 1 copy Or Kurt Van Lobns copy
P.Department of Psychology Heron PANC

Carnegie-Mellon University 3333 Coyote Hill Road
Pittsburgh. Pennsylvania 15213 Palo Alto. California 34304

Or Jelhn Anmett 1 copy Dr Keith T Wescourt 1copy
%Deportment of Psycoology Perceptron ics. Inc

University of Warwick 545 Middlefield Road. Suite 140
Coventry CV4 7AJ Menlo Park, California 94025
ENGLAND

Or Nichaell Atwood I copy William 8 Whitten 1copy
ITT - Progromming Bell Laboratories

IMw Orom"qe Lane 2D-610
Stratford. Connecticut 08497 Holmdel. low Jersey 07733

O1 . r Alsn ladsoley 1 copy Dr Mike WoIll ias1 copy
Medical Research Council Xeron PARC
Applied Psychology Unit 3333 Coyote Mill1 Road
IS Chooser Rood Palo Alto. California 94304

% ~Cambridge C82 2fF
% ~INGAN

Ada1

Civilian Agencies

Dr Patricia A Buter 1 copy
Dr Patricia Baggett I copy NIE-BRN Bldg. Stop 07

Department of Psychology 1200 19th Street N
Uiversity of Colorado Wasingtoon. DC 20208
Boulder. Colorado 80309

Dr Sosan Chipman copy
Ms Carol* A Bagley 1 copy Learing aid Developmnt

Minnesota Educational Competing National Institute of Education

Consortium 1200 19th Street NW
^354 Hidden Valley Lone Washington. DC 20208

Stillwater, Minnesoct 55082
Edward Esty I copy

Dr Jonathan hoeron I copy Department of Education. OER!

80 Glenn Avenue MS 40

Berwyn. Pennsylvania 19312 1200 19th Street. 14

Washington. DC 202081Mr Anron Barr I Copy

Department of Computer Science Edward J Fventes I copy
Stanford University Department of Education

Stanford. California 94305 1200 19tk Street. NV

Washington. DC 20208
Dr John Black I copy

Yale University TAlE. TAK 1 copy

Bo 11A. Yale Station National Institute of Education
New Haven. Connecticut 06520 1200 19th Street. NW

Washington. DC 20208
Dr John S Brown I copy

XEROX Palo Alto Research Cunter Or Joa Mays 1 copy

3333 Coyote Road National lnstitste of Education
Palo Alto. California 94304 1200 19th Street. NW

Wash ing5on. DC 20208

Dr Bruce Buchanan
1 copy

Department of Computer Science Dr Arthur Melmd I copy

Stanford University 724 Brove

Stanford. California 94305 U S Dept of Education
Waskingto. DC 20208

Dr Jaime Carbonell 1 copy

Department of Psychology Or Andrew R Molnar I copy

Carnegie-Mellon University Office of Scientific and Engineering
Pittsburgh, Pennsylvania 15213 Personnel and Education

National Science Foundation

Or Pat Carpenter I copy Washington. DC 20550

Department of Psychology
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213 Everett Palmer I copy

Research Scientist
Dr William Chase I copy Mail Stope 239-3

Departmeot of Psychology NASA Aes Research Center

Carnegie-Mellon University Moffett Field. California 94035
Pittsburgh. Pennsylvania 15213

Or Mary Stoddard I copy
Dr Micheline Chi I copy C 10. Ml Stop 296
Learning R I D Center Los Alamos Ntioal Laboratories
University of Pittsnrgh Los Aloos. %a Menico 87545
3939 O'Hare Strest
Pittsburgh. Pensylvania 15213 thief. Psychological Research Broach I copy

U Coast Guard (GQP-112TP42)
Washington. DC 20593

- -+ ' .'. 'o .- '.' +. .. ,-'. • . . .- ;" '. . " ,

|.1

C k-.-.

Dr William Clancey I copy
Department of Computer Science Or Frek Wit,hrow 1 copy
Stanford University U S Office of Edoeatiom
Stnfori. Califoreia 14306 400 Maryland Aveae SW

Wash egtoo. DC 20202
Or Allen M Collins 1 copy
Bolt Beranek a %evan. INC Or Joseph L Young. Director I copy
50 Mo tol Street Memory A Con it e Processes
Cambridge. Massachusetts 02138 National Science Foondation

Wash itgto. DC 20550
ERIC Facility-Acqnisitions I copy
4833 Rugby Avenue
Bethesda. Maryland 20014

Mr Wallace Feurzeig 1 copy
Department of Edvcational Technology
Bolt Beraeok *ad Nevin
10 Moulton Street
Cambridge. Mossachusetts 02238

Dr Oeuter Fletcher I copy
WICAT Research Institute
1875 S State Street
Orem. Utah 22333

Or John R Frederihsen 1 copy
Bolt Beranek A Newman
50 Moulton Street
Cambridge. Massachusetts 02138

.J

,.%

4~

.4

- .. *4 .4 .9** *4i *.€.* - 1~.

"44 . .

